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PROBLEMS OF CONTROLLING BY THE RIGHT-HAND SIDES OF ELLIPTICAL SYSTEMS 
AND THEIR APPLICATION TO CONTROL OF THE STRESS-STRAIN STATE IN SHELLS* 

V.G. LITVINOV and Iu.1. RUBEZHANSKII 

The problem of controlling by the right-hand sides of elliptical systems is consid- 

ered for the case when the target function is a function of a maximum, and the set 

of admissible controls is not convex. The existence of a solution of an infinite- 

dimensional optimal control problem is proved and problems arising in the course of 

approximating the latter solution by solutions of the finite-dimensional problems 

are studied. The problems of controlling the stress-strain state of shells of re- 

volution are used as examples. In this case the largest deviation of the stresses 

or displacements in the shell from the given values isminimized, with constraints 

imposed on the strength. The approach used here is related to /l/ where analogous 

problems were considered for the case of a quadratic target function and a convex 

set of admissible controls. Earlier, the problems of control by the right-hand 

sides were studied in /2-4/ for plates, and cylindrical axially loaded shells, and 

/5/ dealt with the problems of controlling by the stress-strain state of the plates 

in the minimax formulation, with the function of thickness used as the control. 

1. Formulation of the problem. Existence of a solution. We shall begin with 

a physical description of the problem. Let a certain structure (plate or shell) be acted on, 

in addition to the fixed basic load I,,, by a system of loads f localised at a part of the 

surface and able to vary within specified limits. This system serves AS the control. we 
require to find such a load f from amongst the admissible loads, that the maximum deviationof 

the displacements or other specified characteristics of the stress state of the structure from 

the given values is minimal. We consider problems of determining the minimum deflection of 

the structure, of the maximum unloading, etc. The load f is chosen so as to fall between the 

lower and upper limits, i.e. f_ //<f+. and such that the structure withstands the loading. 

The load f can simulate the action of certain special controls, as well as the reactions of 

the elastic supports and rigid edges. We can use the loads 1 to "tune" the structure during 

its use, to the action of varying loads f,, on it. The problem under consideration corresponds 

to that of controlling the right-hand sides of the equations describing the state of the 

structure. We shall now give the abstract formulation of the problem. 

Let X be a Hilbert space of functions over the field of real n-umbers, defined in a bound- 

ed domain PCnn. We shall consider the space X* dual to X, as the space of controls. The 

state uIE X of the control system is defined for the control fE X* as a solution of the 

equation 

a (Uf, v) = (f, u). vc E x (1.1) 

Here u, v+ a (u, D) is a bilinear form on X X X, continuous and coercive, i.e. 

a(u,U)~aI(U112X,,>0,~uEX (1.2) 

where (f, V) is the value of the functional /EX* on the element v= x. We note that in 

problems of structural mechanics the bilinear form a is generated by the potential energy of 

deformation, and f is the load acting on the structure. The function nf solving the problem 

(1.1) determines the displacements of the structure. 
According to the Lax-Milgram theorem /6/ the mapping f- uf acting from ,Y*into X deter- 

mined by the equation (1.1) is a homeomorphism. Let cp :uu v(u) denote a continuous mapping 

of X into C (52”). Then the function 

f - ‘P (Uf) = 'Pi (1.3) 

will represent a continuous mapping of X*into C(V) as a combination of two continuous map- 

pings. The target function has the form 
-- 
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(1.4) 

where B"is the closure of the region OCR". 
Taking into account the continuity of the mapping f++ qt(z) and the inequality 

1 max Pi (z) - max F, (r) I< max 1 FI (x) - FS (2) 1, 
a!ERC x&f EPC 

VF,, F, E C (W) 

and remembering that a mapping continuous on a compact is uniformly continuous, we find that 
f++*(f) maps X* continuously into R, The problem of optimal control consists of finding 4 
such that 

where Ua c X*, lJa is the set of admissible controls. 

Theorem 1. Let Y be a reflexive Banach space such that YC X* (the inclusion 1 
is compact). If Uais a bounded, sequentially weakly closed set in I-', then a solution 
the problem (1.5) exists i.e. an element qE lJo can be found for which 

q(q) = inf 9 (0 
fEU8 

Proof. Let &I) C ua be a minimizing sequence, i.e. 

(1.5) 

-> X* 
of 

(1.6) 

From the boundednessofthe set U, and Yit follows that a subsequence If,,,) can be separated 
from the sequence (fn) such, that fm-f,, weakly in Y. Since the inclusion of Yin X'is com- 
pact, then 

f,-f. strongly in X* 

Since U,is sequentially weakly closed in I', we have 

(1.7) 

From 

i.e. 

/6/, 

foEUa (1.8) 

(1.7) we have limg&)=$Vo), therefore by virtue of (1.6) we obtain 

(I, (fo) = fga rp (f) (1.9) 

the function q= f. is a solution of the problem (1.5). 

Note lo. Since any closed convex set in a Banach space is sequentially weakly closed 
it follows that the theorem also holds in the case when U, is a bounded convex set in Y. 

2. Approximating the solution of the optimal control problem by solving a 
finite-dimensional problem. Let (H,,},"=, be a sequence of finite-dimensional subspaces 
in Y satisfying the condition 

. .., 

lim inf IIh-co~Ijy=O, VoEY 
n-m IEH, (2.1) 

The finite-dimensional problem consists of finding h, such that 

It can easily be shown that the problem (2.2) reduces to the problem of mathematical 
ming. Indeed, let fi (i = 1, . . ., n) be a basis in H,,. Substituting f in the target 
al (1.4) by n 

we find that f-+$(f) is a scalar function and a ++ J (a) where a = (~,,a,,. . ., u,,)ER*, 
problem (2.2) reduces to that of finding a vector b such that 

and the 

b E K,y c R”, J(b) = inf J(a) 
tEK0 

(2.3) 

Ka = {a 1 a = (aI, . . , a,) E R”, f = i$l aif; E U,} (2.4) 

(2.2) 

program- 
function- 

Let us denote by U,’ the interior of the set Ua and fit Ua with a topology induced by the 
strong topology of the space Y. 
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Theorem 2. Let the conditions of Theorem 1 hold and {FI,),"=, be a sequence of finite- 

dimensional subspaces in Y satisfying the condition (2.1). Let also a sequence {fi,)E=, exist 
such that 

g,EUa",Yla; g,-tq strongly in Y (2.5) 

where q is a solution of the problem (1.5). Then for sufficiently large n the problem (2.2) 

will have a solution h, and 

lim*((h,)= * (q)= id Q(/) 
fir;, (2.6) 

We can select from the sequence {hn}Kk a subsequence {&)z_, such that IL,,,- q weakly in I'. 

Proof. Taking into account (2.1) and (2.5) we find that at sufficiently large n (with 

n>k) the set H,,n U, is nonempty and a sequence (en},",*, exists such that 

en= Nn n u,; en-g strongly in Y (2.7) 

From (2.7) it follows that 

lim 11, (4 = II, (44 (2.8) 

The set &,n U, is compact in Y and, since f-$(f) maps X* continuously into R, it follows 

that the problem (2.2) has a solution at any n> k. Moreover, if the set Hn n (la is nonempty 

at any n, then the problem (2.2) has a solution at any n. From (l.S), (2.2) and (2.7) is 

follows that 9 (e,) > + (h,)>, II, (4) and lim@((h,,)= $(q), i.e. (2.6) holds. The sequence (h,J;=k is a 

minimizing sequence of the functional f- Jl(t),f~ U,. As in the proof of Theorem 1, we findthat 

we can separate from the sequence (h,);ck a subsequence {h,,,}Eal such that h,-q weakly in Y. 

Notes lo. If the set U,is convex, then the theorem also holds in the case when U, 

contains at least one interior point x0. Indeed, according to a known theorem /7/ every 

point of an open segment with end points zO and gis an interior point of the set ~a. 

2O. Consider the set 
X,=(qIq=U,. rl, (4) = fh&* (0) 

Theorem 1 asserts that X, is nonempty. Theorem 2 gives a finite-dimensional approximation to 

one of the elements of the set X,. Generally speaking, we can select fromthe sequence {h&& 

a subsequence (h,};=l converging weakly to various elements of X,. 

3O. The proof of the theorem indicates that the condition of existence of a sequence 

@I) satisfying the conditions (2.5) can be replaced by the conditions (2.7). Thelattermay 

hold even when ~~0 is empty. 

3. Controlling the stress-strain state of a shell of revolution. We consider 

as an example the problem of controlling the stress-strain state of a shell of revolution. 

The generalized solution w'~ X satisfies the relation 

a (w', 0") = i (f,, + f) o”ABdq dz, Vo” E X 
(3.1) 

Here (r,(p,z) are the cylindrical coordinates /8/, o = (u,u, u)) are the displacements of the 

point lying on the shell middle surface where the displacements are functions of cp and z, 2s - 
periodic in cp, z E [OJ] where L is the length of the shell, D = (0, 2s) i: (0, L), E,, E, are the 

moduli of elasticity, v1 and v2 are the Poisson's ratios, G is the shear modulus, IL = h((p, Z) 

and r = r(2) denote the thickness and the generatrix of the shell respectively, A and Ij are 

the coefficients of the first quadratic form, Eik’, Yik’ and eik*,yik" are the deformation tensor 

components generated by the displacements w' and @"of the shell's middle surface and repre- 

senting linear functions of o', o"and their derivatives /9/, X = Y(62) where V(Q) is the 

closure in the norm 
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of the set of smooth functions in 61, &c-periodic in 'p and satisfying the boundary conditions 

Jo = 0, J E L(vl(Q); Z) is the operator of the boundary conditions where Z is a Hilbert space. 

Here the operator Jcorresponds to the clamping of the shell in such a manner that it cannot 

be displaced as a rigid unit, i.e. for every o E VI(Q) the conditions a (0,~) = 0 and Jo = 0 
imply that o = 0; WPp(Q) are the Sobolev spaces and L(Q; s)' 1s a space of continuous linear 

mappings from the normed space Q into the normed space S. 

In /8,10,11/ it was shown that when certain physically justified constraints are imposed 

on the quantities vlr vz, E,, E,, G, r, h, then the bilinear form u is symmetrical, continuous 

and coercive in Y(a). Therefore every element ~IZG (Y(Q))* h as a unique corresponding func- 

tion of which solves the problem (3.1), and it is also assumed that f. is a fixed function be- 

longing to (V(Q))*. 
Let the function (1.3) have the form 

f-+q+=Fw,* (3.3) 

Here mt* represents the averaging (contraction) of the displacements function at whichsolves 

the problem (3.1), with a smooth kernel, the support of the latter of sufficientlysmallradius 

/12/. The function of can be continued smoothly from P onto R',and o,* E lP(V)]3. 
The mapping F acting from [Cz(Q')13 to C(SP) can be chosen intheform F = F, or F = F,, 

where 

F1: t = (tl, t$. t3) ++ Ff = 5 ai 1 ti - ki 1 (3.4) 
i-l 

F, : t = (tl, t,, t3) cf F,t = 1 Zz (t) - k 1 

Here ai are nonnegative constants, ki = ki(cp,z), k = k(g,q are given functions belonging to 

C (Q"), t - 1, (t) is a continuous mapping from [P(Q")l to C(QC)corresponding to the second in- 

variant of the stress tensor in the shell (at some surface parallel to the middle surface)and 

t = (tl, t,, t3) is the averaged displacement vector. 

In the first case (F= F,) the target function defined by (1.4), (3.3) corresponds to 

the displacements closest, in the minimax sense, to the given displacements, and inthesecond 

case (F = F, ) the target function corresponds to the characteristics of the stress state 

(second invariant of the stress tensor) closest, in the minimax sense, to the given character- 
istics. We assume that 

Y={flfE[W,‘(Q)Y. P>Z, fla,n.=O, Qlcn, (3.5) 

where Yis a Banach space with the norm of the space rw,l @)I s. The set of admissiblecontrols 

is chosen in the form 

Ua=UQ 
(3.6) 

where lJ0 is the closure,inthe norm of the space Y, of the set 

U={flfEY; IlflI~<d; f-<f<f+ in 9’; @‘,(fJ<o,s ==1,3} 
Here f_ and f+ are given elements of the space [C (QC)]? 

(3.7) 

(3.8) 

Qfa (cP* Z) = i~maijkm~ijs (“+‘) (Cp, Z) U~f~‘) (Cp, Z) + X BijO!~~+'+" (Cp. 2) - 1 
ij 

Here c!r'+" are the stresses in the shell corresponding to the averaged displacement '1s function 

dir - When s=l, the stresses are determined on the outer surface of the shell, and for 
s = 2 on the inner surface, and a:jk,,,, pi, are constants related to the material strength con- 
stants i, j, k, m = 1, 2. The functions f- ms (f) (s = 1, 2) characterize the state of stress of 
the shell corresponding to the load f,, +f. When @,,(fi = 0 (s = 1, 2), the limit stateofstress 
is reached, related to the strength criterion determined by the right-hand side of (3.8). We 

assume that f_, f+ and d in (3.7), as well as the mechanical characteristics of the material 
and shell dimensions are such, that the set Uis nonempty. Using the inclusion theorems /12/ 
we find that conditions of Theorem 1 hold for the controls chosen in the form (3.5), (3.6), 
i.e. a solution of the problem (1.5) exists. 

m 
Let {H,}-l be a sequence of the finite-dimensional subspaces in Ysatisfying the condi- 

tion of limit density (2.1). Every point of the set Uis interior, therefore by virtue of 
(3.6) for every f= Us there exists a sequence {g,,}F=l for which the conditions (2.5) hold. 
Thus the conditions of Theorem 2 are fulfilled. 
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We note that the regularization (averaging) of the solution oy,+r of the problem (3.1) 
was carried out in order for the target function (1.4) to be meaningful. In accordance with 
the hypotheses of the mechanics of continuumand the known results concerning the convergence 
of the averaged functions , the regularizing operation leaves the solution of (3.1) practically 
unaffected, provided that the radius of averaging kernel is sufficiently small. In particular, 

in the case of I: = F, with ~1, = c/.? = 0 the regularizing operation need not be used. 
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